编程算法模板

各类算法汇总

高斯消元解线性方程组

883. 高斯消元解线性方程组

#include<bits/stdc++.h>
#define int long long
/*
1.找最大行
2.交换
3.当前行首位变成1
4.用当前行将下面所有的列消成0
*/
using namespace std;
const int N = 2e2 + 10;
const double eps = 1e-9; // 防止精度问题
double a[N][N];
int n;
int gauss() {
	int c = 0, r = 0;
	for (; c < n; c++) {
		int t = r;
		for (int i = r; i < n; i ++ ) { // 找绝对值最大的行
			if (fabs(a[i][c]) > fabs(a[t][c]))
				t = i;
		}
		if (fabs(a[t][c]) < eps) continue; 
		for (int i = c; i <= n; i++) swap(a[t][i], a[r][i]); // 将这一行调到最上面
		for (int i = n; i >= c; i--) a[r][i] /= a[r][c]; // 要倒着算,否则会影响后面的数
		for (int i = r + 1; i < n; i++) { // 第四步
			if (fabs(a[i][c]) > eps) { // 如果是0就不用操作了
				for (int j = n; j >= c; j--) {
					a[i][j] -= a[r][j] * a[i][c];
				}
			}
		}
		r++;
	}
	if (r < n) { //y总口中的非完美三角形
		for (int i = r; i < n; i++) {
			if (fabs(a[i][n]) > eps) { // 0 != 0
				return 2; // 无解
			}
		}
		return 1; // 无穷个解, 0=0
	}
	for (int i = n - 1; i >= 0; i --) { // 有解从下往上回代
		for (int j = i + 1; j < n; j++) {
			a[i][n] -= a[i][j] * a[j][n];
		}
	}
	return 0;
}
int main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n;
	for (int i = 0; i < n; i++)
		for (int j = 0; j < n + 1; j++)
			cin >> a[i][j];
	int t = gauss();
	if (t == 0) { 
		for (int i = 0; i < n; i ++ ) {
			if (fabs(a[i][n]) < eps) a[i][n] = 0.00; //防止-0.0
			cout << a[i][n] << '\n';
 		}
	}
	else if (t == 1) puts("Infinite group solutions"); 
	else puts("No solution"); 
}

884. 高斯消元解异或线性方程组

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e2 + 10;
int a[N][N], n;
int gauss() {
	int c = 0, r = 0;
	for (; c < n; c++) {
		int t = r;
		for (int i = r; i < n; i++)
			if (a[i][c])
				t = i;
		if (!a[t][c]) continue;
		for (int i = c; i <= n; i++) swap(a[r][i], a[t][i]);
		for (int i = r + 1; i < n; i++)
			if (a[i][c])
				for (int j = n; j >= c; j--)
					a[i][j] ^= a[r][j];
		r ++ ;
	}
	if (r < n) {
		for (int i = r; i < n; i++)
			if (a[i][n])
				return 2;
		return 1;
	}
	for (int i = n - 1; i >= 0; i--)
		for (int j = i + 1; j < n; j++)
			a[i][n] ^= a[i][j] * a[j][n];
	return 0;
}
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n;
	for (int i = 0; i < n; i++)
		for (int j = 0; j <= n; j++)
			cin >> a[i][j];
	int t = gauss();
	if(t == 0){
		for(int i = 0; i < n; i++) cout << a[i][n] << '\n';
	}else if(t == 1){
		cout << "Multiple sets of solutions\n";
	}else{
		cout << "No solution\n";
	}
	return 0;
}

求排列组合

AcWing 885. 求组合数 I

1.递推法预处理求排列组合,复杂度最大为O(N2)

#include<bits/stdc++.h>
#define int long long 
using namespace std;
const int N = 2e3 + 10, mod = 1e9 + 7;
int dp[N][N];
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int n;
	cin >> n;
	for (int i = 0; i < N; i++)
		for (int j = 0; j <= i; j++){
			if(!j) dp[i][j] = 1;
			else dp[i][j] = (dp[i - 1][j] + dp[i - 1][j - 1]) % mod;
			// C(b, a) = C(b, a - 1) + C(b - 1, a - 1)
		}
	while(n--){
		int a, b;
		cin >> a >> b;
		cout << dp[a][b] << '\n';
	}
	return 0;
}

2.预处理逆元求组合,复杂度最大为O(nlogn)

AcWing 885. 求组合数 II

#include<bits/stdc++.h>
#define int long long 
using namespace std;
/*
C(b,a) = a! / b! / (a - b)!
*/
const int N = 1e5 + 10, mod = 1e9 + 7;
int ksm(int a, int b){//快速幂模版~这里用快速幂求逆元是因为p是素数
	int ans = 1;
	while(b){
		if(b & 1) ans = ans * a % mod;
		ans %= mod;
		a = a * a % mod;
		a %= mod;
		b >>= 1;
	}
	return ans;
}
int fact/*阶乘*/[N], infact/*逆元*/[N], n;
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin >> n;
	fact[0] = infact[0] = 1;
	for(int i = 1; i < N; i++){
		fact[i] = fact[i - 1] * i % mod; //求阶乘
		infact[i] = infact[i - 1] * ksm(i, mod - 2) % mod;
	}
	while(n--){
		int a, b;
		cin >> a >> b;
		cout << fact[a] * infact[b] % mod * infact[a - b] % mod << '\n';
		//除阶乘 -> 乘逆元
	}
	return 0;
}

3. lucas(卢卡斯)定理求组合数 O(nlog2n)

AcWing 885. 求组合数 III Cabmodp=CamodpbmodpCa/pb/p 但是,p必须为素数

#include<bits/stdc++.h>
#define int long long 
/*
lucas(卢卡斯)定理来了,喵~
*/
using namespace std;
int p;
int ksm(int a, int b){
	int ans = 1;
	while(b){
		if(b & 1) ans = ans * a % p;
		a = a * a % p;
		b >>= 1;
	}
	return ans;
}
int C(int a, int b){
	int ans = 1;
	for(int i = 1, j = a; i <= b; i++, j--){
		ans = ans * j % p;
		ans = ans * ksm(i, p - 2) % p;
	}
	return ans;
}
int lucas(int a, int b){
	if(a < p && b < p) return C(a, b);
	return C(a % p, b % p) % p * lucas(a / p, b / p);
}
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int t;
	cin >> t;
	while(t--){
		int n, m;
		cin >> n >> m >> p;
		cout << lucas(n + m, n) % p << '\n';
	}
	return 0;
}

P3807 【模板】卢卡斯定理/Lucas 定理

#include<bits/stdc++.h>
#define int long long 
using namespace std;
int p;
int ksm(int a, int b){
	int ans = 1;
	while(b){
		if(b & 1) ans = ans * a % p;
		a = a * a % p;
		b >>= 1;
	}
	return ans;
}
int C(int a, int b){
	int ans = 1;
	for(int i = 1, j = a; i <= b; i++, j--){
		ans = ans * j % p;
		ans = ans * ksm(i, p - 2) % p;
	}
	return ans;
}
int lucas(int a, int b){
	if(a < p && b < p) return C(a, b);
	return C(a % p, b % p) % p * lucas(a / p, b / p);
}
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int t;
	cin >> t;
	while(t--){
		int n, m;
		cin >> n >> m >> p;
		cout << lucas(n + m, n) % p << '\n';
	}
	return 0;
}

欧拉筛+分解质因数+高精度求非模的组合数

先去筛素数,筛完后去分解质因数,然后用容斥原理∣ab∣=∣a∣+∣b∣+∣ab∣求出求每个质因数在Cab出现了几次,最后用高精度求出答案ans

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 5e3 + 10;
int prime[N], a, b, num, sum[N];
bool st[N];
void primes() {//线性筛(欧拉筛)
	for (int i = 2; i < N; i++) {
		if (!st[i])prime[num++] = i;
		for(int j = 0; prime[j] * i < N; j++) {
			st[prime[j] * i] = true;
			if (i % prime[j] == 0)break;
		}
	}
}
int get(int n, int p) {//求n!的中p的次数
	int res = 0;
	while (n) {
		res += n / p;
		n /= p;
	}
	return res;
}
vector<int> mul(vector<int> a, int b) {//高精乘低精
	vector<int> c;
	int t = 0;
	for (int i = 0; i < (int)(a.size()); i ++ ) {
		t += a[i] * b;
		c.push_back(t % 10);
		t /= 10;
	}
	while (t) {
		c.push_back(t % 10);
		t /= 10;
	}
	return c;
}
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int a, b;
	cin >> a >> b;
	primes();
	for (int i = 0; i < num; i++) {
		int p = prime[i];
		sum[i] = get(a, p) - get(a - b, p) - get(b, p);
		//容斥原理求贡献
	}
	vector<int> ans;
	ans.push_back(1);
	for (int i = 0; i < num; i++)//算答案
		for (int j = 0; j < sum[i]; j++)
			ans = mul(ans, prime[i]);
	for (int i = ans.size() - 1; i >= 0; i --)
		cout << ans[i] ;
	cout << '\n';
	return 0;
}

卡特兰数

Catalan(n)=C2∗nn/(n+1)

889. 满足条件的01序列

#include<bits/stdc++.h>
#define int long long 
using namespace std;
/*
卡特兰数:
C(n * 2, n) / (n + 1)
*/
const int mod = 1e9 + 7;
int ksm(int a, int b){
	int ans = 1;
	while(b){
		if(b & 1) ans = ans * a % mod;
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}
signed main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int n;
	cin >> n;
	int a = 2 * n, b = n, ans = 1;
	for(int i = a; i > a - b; i--) ans = ans * i % mod;
	for(int i = 1; i <= b; i++) ans = ans * ksm(i, mod - 2) % mod;
	ans = ans * ksm(n + 1, mod - 2) % mod;/*除n + 1等于乘上他的逆元*/
	cout << ans << '\n';
	return 0;
}

评论